Importance sampling transformation of the imaginarytime Schrödinger equation

For a wave function $\Psi(\mathbf{R}, \tau)$ the imaginary-time Schrödinger equation, with some constant energy offset E_{T}, is

$$
\begin{equation*}
\left[-\frac{1}{2} \nabla_{\mathbf{R}}^{2}+V(\mathbf{R})-E_{\mathrm{T}}\right] \Psi(\mathbf{R}, \tau)=-\frac{\partial}{\partial \tau} \Psi(\mathbf{R}, \tau) . \tag{1}
\end{equation*}
$$

Then, using the mixed distribution

$$
\begin{equation*}
f(\mathbf{R}, \tau)=\Psi(\mathbf{R}, \tau) \Psi_{\mathrm{T}}(\mathbf{R}), \tag{2}
\end{equation*}
$$

for some trial wave function $\Psi_{T}(\mathbf{R})$, we can transform Eq. (1) into its importance-sampled version by substituting

$$
\begin{equation*}
\Psi(\mathbf{R}, \tau)=\frac{f(\mathbf{R}, \tau)}{\Psi_{\mathrm{T}}(\mathbf{R})}, \tag{3}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
\left[-\frac{1}{2} \nabla_{\mathbf{R}}^{2} \frac{f(\mathbf{R}, \tau)}{\Psi_{\mathrm{T}}(\mathbf{R})}+V(\mathbf{R}) \frac{f(\mathbf{R}, \tau)}{\Psi_{\mathrm{T}}(\mathbf{R})}-E_{\mathrm{T}} \frac{f(\mathbf{R}, \tau)}{\Psi_{\mathrm{T}}(\mathbf{R})}\right]=-\frac{\partial}{\partial \tau} \frac{f(\mathbf{R}, \tau)}{\Psi_{\mathrm{T}}(\mathbf{R})} . \tag{4}
\end{equation*}
$$

The trial wave function $\Psi_{T}(\mathbf{R})$ is independent of τ, so we can pull this out of the time derivative on the right

$$
\begin{equation*}
\left[-\frac{1}{2} \nabla_{\mathbf{R}}^{2} \frac{f(\mathbf{R}, \tau)}{\Psi_{\mathrm{T}}(\mathbf{R})}+V(\mathbf{R}) \frac{f(\mathbf{R}, \tau)}{\Psi_{\mathrm{T}}(\mathbf{R})}-E_{\mathrm{T}} \frac{f(\mathbf{R}, \tau)}{\Psi_{\mathrm{T}}(\mathbf{R})}\right]=-\frac{1}{\Psi_{\mathrm{T}}(\mathbf{R})} \frac{\partial}{\partial \tau} f(\mathbf{R}, \tau), \tag{5}
\end{equation*}
$$

and multiply both by sides by $\Psi_{T}(\mathbf{R})$ to give

$$
\begin{equation*}
\left[-\frac{1}{2} \Psi_{\mathrm{T}}(\mathbf{R}) \nabla_{\mathbf{R}}^{2} \frac{f(\mathbf{R}, \tau)}{\Psi_{\mathrm{T}}(\mathbf{R})}+V(\mathbf{R}) f(\mathbf{R}, \tau)-E_{\mathrm{T}} f(\mathbf{R}, \tau)\right]=-\frac{\partial}{\partial \tau} f(\mathbf{R}, \tau) . \tag{6}
\end{equation*}
$$

Now, focussing on the Laplacian and using the product rule we find

$$
\begin{align*}
\nabla_{\mathbf{R}}^{2} \frac{f(\mathbf{R}, \tau)}{\Psi_{\mathrm{T}}(\mathbf{R})} & =\nabla_{\mathbf{R}} \cdot \nabla_{\mathbf{R}} \frac{f(\mathbf{R}, \tau)}{\Psi_{\mathrm{T}}(\mathbf{R})} \\
& =\nabla_{\mathbf{R}}\left[\frac{1}{\Psi_{\mathrm{T}}(\mathbf{R})} \nabla_{\mathbf{R}} f(\mathbf{R}, \tau)-\frac{1}{\Psi_{\mathrm{T}}^{2}(\mathbf{R})} f(\mathbf{R}, \tau) \nabla_{\mathbf{R}} \Psi_{\mathrm{T}}(\mathbf{R})\right] \\
& =\frac{1}{\Psi_{\mathrm{T}}(\mathbf{R})} \nabla_{\mathbf{R}}^{2} f(\mathbf{R}, \tau)-\frac{1}{\Psi_{\mathrm{T}}^{2}(\mathbf{R})} \nabla_{\mathbf{R}} f(\mathbf{R}, \tau) \cdot \nabla_{\mathbf{R}} \Psi_{\mathrm{T}}(\mathbf{R}) \\
& +\frac{2}{\Psi_{\mathrm{T}}^{3}(\mathbf{R})} f(\mathbf{R}, \tau)\left(\nabla_{\mathbf{R}} \Psi_{\mathrm{T}}(\mathbf{R})\right)^{2}-\frac{1}{\Psi_{\mathrm{T}}^{2}(\mathbf{R})} \nabla_{\mathbf{R}} f(\mathbf{R}, \tau) \cdot \nabla_{\mathbf{R}} \Psi_{\mathrm{T}}(\mathbf{R}) \\
& -\frac{1}{\Psi_{\mathrm{T}}^{2}(\mathbf{R})} f(\mathbf{R}, \tau) \nabla_{\mathbf{R}}^{2} \Psi_{\mathrm{T}}(\mathbf{R}) . \tag{7}
\end{align*}
$$

Collecting like terms and multiplying by $-\frac{1}{2} \Psi_{\mathrm{T}}(\mathbf{R})$ we obtain

$$
\begin{align*}
& -\frac{1}{2} \Psi_{\mathrm{T}}(\mathbf{R}) \nabla_{\mathbf{R}}^{2} \frac{f(\mathbf{R}, \tau)}{\Psi_{\mathrm{T}}(\mathbf{R})}=-\frac{1}{2} \nabla_{\mathbf{R}}^{2} f(\mathbf{R}, \tau)+\frac{1}{\Psi_{\mathrm{T}}(\mathbf{R})} \nabla_{\mathbf{R}} f(\mathbf{R}, \tau) \cdot \nabla_{\mathbf{R}} \Psi_{\mathrm{T}}(\mathbf{R}) \\
& -\frac{1}{\Psi_{\mathrm{T}}^{2}(\mathbf{R})} f(\mathbf{R}, \tau)\left(\nabla_{\mathbf{R}} \Psi_{\mathrm{T}}(\mathbf{R})\right)^{2}+\frac{1}{2 \Psi_{\mathrm{T}}(\mathbf{R})} f(\mathbf{R}, \tau) \nabla_{\mathbf{R}}^{2} \Psi_{\mathrm{T}}(\mathbf{R}) \tag{8}
\end{align*}
$$

Substituting Eq. (8) into Eq. (6) we now have

$$
\begin{align*}
& -\frac{1}{2} \nabla_{\mathbf{R}}^{2} f(\mathbf{R}, \tau)+\frac{1}{\Psi_{\mathrm{T}}(\mathbf{R})} \nabla_{\mathbf{R}} f(\mathbf{R}, \tau) \cdot \nabla_{\mathbf{R}} \Psi_{\mathrm{T}}(\mathbf{R})-\frac{1}{\Psi_{\mathrm{T}}^{2}(\mathbf{R})} f(\mathbf{R}, \tau)\left(\nabla_{\mathbf{R}} \Psi_{\mathrm{T}}(\mathbf{R})\right)^{2} \\
& +\underbrace{\frac{1}{2 \Psi_{\mathrm{T}}(\mathbf{R})} f(\mathbf{R}, \tau) \nabla_{\mathbf{R}}^{2} \Psi_{\mathrm{T}}(\mathbf{R})+V(\mathbf{R}) f(\mathbf{R}, \tau)}_{K}-E_{\mathrm{T}} f(\mathbf{R}, \tau)=-\frac{\partial}{\partial \tau} f(\mathbf{R}, \tau) \tag{9}
\end{align*}
$$

Then, adding $\frac{1}{2} K-\frac{1}{2} K$ gives

$$
\begin{align*}
& -\frac{1}{2} \nabla_{\mathbf{R}}^{2} f(\mathbf{R}, \tau)+\frac{1}{\Psi_{\mathrm{T}}(\mathbf{R})} \nabla_{\mathbf{R}} f(\mathbf{R}, \tau) \cdot \nabla_{\mathbf{R}} \Psi_{\mathrm{T}}(\mathbf{R}) \\
& +\left[-\frac{1}{\Psi_{\mathrm{T}}^{2}(\mathbf{R})} f(\mathbf{R}, \tau)\left(\nabla_{\mathbf{R}} \Psi_{\mathrm{T}}(\mathbf{R})\right)^{2}+\frac{1}{\Psi_{\mathrm{T}}(\mathbf{R})} f(\mathbf{R}, \tau) \nabla_{\mathbf{R}}^{2} \Psi_{\mathrm{T}}(\mathbf{R})\right] \\
& -\frac{1}{2 \Psi_{\mathrm{T}}(\mathbf{R})} f(\mathbf{R}, \tau) \nabla_{\mathbf{R}}^{2} \Psi_{\mathrm{T}}(\mathbf{R})+V(\mathbf{R}) f(\mathbf{R}, \tau)-E_{\mathrm{T}} f(\mathbf{R}, \tau)=-\frac{\partial}{\partial \tau} f(\mathbf{R}, \tau), \tag{10}
\end{align*}
$$

and pulling $f(\mathbf{R}, \tau)$ out as a common factor (and swapping the order of the terms in square brackets), we arrive at

$$
\begin{align*}
& -\frac{1}{2} \nabla_{\mathbf{R}}^{2} f(\mathbf{R}, \tau)+\frac{1}{\Psi_{\mathrm{T}}(\mathbf{R})} \nabla_{\mathbf{R}} f(\mathbf{R}, \tau) \cdot \nabla_{\mathbf{R}} \Psi_{\mathrm{T}}(\mathbf{R}) \\
& +f(\mathbf{R}, \tau)\left[\frac{1}{\Psi_{\mathrm{T}}(\mathbf{R})} \nabla_{\mathbf{R}}^{2} \Psi_{\mathrm{T}}(\mathbf{R})-\frac{1}{\Psi_{\mathrm{T}}^{2}(\mathbf{R})}\left(\nabla_{\mathbf{R}} \Psi_{\mathrm{T}}(\mathbf{R})\right)^{2}\right] \\
& +\left(-\frac{1}{2 \Psi_{\mathrm{T}}(\mathbf{R})} \nabla_{\mathbf{R}}^{2} \Psi_{\mathrm{T}}(\mathbf{R})+V(\mathbf{R})-E_{\mathrm{T}}\right) f(\mathbf{R}, \tau)=-\frac{\partial}{\partial \tau} f(\mathbf{R}, \tau) . \tag{11}
\end{align*}
$$

The terms in square brackets are now just a product rule expansion of $\nabla_{\mathbf{R}}\left(\Psi_{\mathrm{T}}^{-1}(\mathbf{R}) \nabla_{\mathbf{R}} \Psi_{\mathrm{T}}(\mathbf{R})\right)$ and we multiply the potential term $V(\mathbf{R})$ by $\Psi_{\mathrm{T}}(\mathbf{R}) / \Psi_{\mathrm{T}}(\mathbf{R})$ to find

$$
\begin{align*}
& -\frac{1}{2} \nabla_{\mathbf{R}}^{2} f(\mathbf{R}, \tau)+\frac{1}{\Psi_{\mathrm{T}}(\mathbf{R})} \nabla_{\mathbf{R}} f(\mathbf{R}, \tau) \cdot \nabla_{\mathbf{R}} \Psi_{\mathrm{T}}(\mathbf{R})+f(\mathbf{R}, \tau) \nabla_{\mathbf{R}}\left(\frac{\nabla_{\mathbf{R}} \Psi_{\mathrm{T}}(\mathbf{R})}{\Psi_{\mathrm{T}}(\mathbf{R})}\right) \\
& +\left(-\frac{1}{2 \Psi_{\mathrm{T}}(\mathbf{R})} \nabla_{\mathbf{R}}^{2} \Psi_{\mathrm{T}}(\mathbf{R})+V(\mathbf{R}) \frac{\Psi_{\mathrm{T}}(\mathbf{R})}{\Psi_{\mathrm{T}}(\mathbf{R})}-E_{\mathrm{T}}\right) f(\mathbf{R}, \tau)=-\frac{\partial}{\partial \tau} f(\mathbf{R}, \tau) . \tag{12}
\end{align*}
$$

Now, the second and third terms on the first line are just another product rule expansion, and we can pull a factor of $\Psi_{\mathrm{T}}^{-1}(\mathbf{R})$ from the first two terms on the second line to give

$$
\begin{align*}
& -\frac{1}{2} \nabla_{\mathbf{R}}^{2} f(\mathbf{R}, \tau)+\nabla_{\mathbf{R}} \cdot\left[\frac{\nabla_{\mathbf{R}} \Psi_{\mathrm{T}}(\mathbf{R})}{\Psi_{\mathrm{T}}(\mathbf{R})} f(\mathbf{R}, \tau)\right] \\
& +(\frac{1}{\Psi_{\mathrm{T}}(\mathbf{R})}[\underbrace{-\frac{1}{2} \nabla_{\mathbf{R}}^{2} \Psi_{\mathrm{T}}(\mathbf{R})+V(\mathbf{R}) \Psi_{\mathrm{T}}(\mathbf{R})}_{\hat{H} \Psi_{\mathrm{T}}(\mathbf{R})}]-E_{\mathrm{T}}) f(\mathbf{R}, \tau)=-\frac{\partial}{\partial \tau} f(\mathbf{R}, \tau) \tag{13}
\end{align*}
$$

and we recognise that the square brackets on the second line are now just the Hamiltonian \hat{H} acting on $\Psi_{\mathrm{T}}(\mathbf{R})$, so

$$
\begin{align*}
-\frac{1}{2} \nabla_{\mathbf{R}}^{2} f(\mathbf{R}, \tau)+\nabla_{\mathbf{R}} \cdot[\underbrace{\frac{\nabla_{\mathbf{R}} \Psi_{\mathrm{T}}(\mathbf{R})}{\Psi_{\mathrm{T}}(\mathbf{R})}}_{\mathbf{V}(\mathbf{R})} f(\mathbf{R}, \tau)] & +(\underbrace{\frac{\hat{H} \Psi_{\mathrm{T}}(\mathbf{R})}{\Psi_{\mathrm{T}}(\mathbf{R})}}_{E_{\mathrm{L}}(\mathbf{R})}-E_{\mathrm{T}}) f(\mathbf{R}, \tau) \\
& =-\frac{\partial}{\partial \tau} f(\mathbf{R}, \tau) . \tag{14}
\end{align*}
$$

Finally, by substituting the drift velocity $\mathbf{V}(\mathbf{R})=\Psi_{\mathrm{T}}^{-1}(\mathbf{R}) \nabla_{\mathbf{R}} \Psi_{\mathrm{T}}(\mathbf{R})$ and the local energy $E_{\mathrm{L}}(\mathbf{R})=\Psi_{\mathrm{T}}^{-1} \hat{H} \Psi_{\mathrm{T}}(\mathbf{R})$, we arrive at the final result

$$
\begin{equation*}
-\frac{1}{2} \nabla_{\mathbf{R}}^{2} f(\mathbf{R}, \tau)+\nabla_{\mathbf{R}} \cdot[\mathbf{V}(\mathbf{R}) f(\mathbf{R}, \tau)]+\left(E_{\mathrm{L}}(\mathbf{R})-E_{\mathrm{T}}\right) f(\mathbf{R}, \tau)=-\frac{\partial}{\partial \tau} f(\mathbf{R}, \tau) \tag{15}
\end{equation*}
$$

which is the importance-sampled imaginary-time Schrödinger equation.

