Importance sampling transformation of the imaginary-
time Schrodinger equation

For a wave function U (R, 7) the imaginary-time Schrodinger equation, with some constant
energy offset Er, is
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Then, using the mixed distribution
f(R,7) =¥ (R, 7)¥r(R), (2)

for some trial wave function Ur(R), we can transform Eq. (1) into its importance-sampled
version by substituting
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The trial wave function ¥r(R) is independent of 7, so we can pull this out of the time
derivative on the right
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and multiply both by sides by U(R) to give
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Now, focussing on the Laplacian and using the product rule we find
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Collecting like terms and multiplying by —%\PT(R) we obtain
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Substituting Eq. (%) into Eq. (0) we now have
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Then, adding %K — %K gives
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and pulling f(R,7) out as a common factor (and swapping the order of the terms in
square brackets), we arrive at
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The terms in square brackets are now just a product rule expansion of
Vr(P7:' (R)VrUr(R)) and we multiply the potential term V(R) by ¥r(R)/¥1(R) to
find
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Now, the second and third terms on the first line are just another product rule expansion,
and we can pull a factor of ¥;'(R) from the first two terms on the second line to give
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and we recognise that the square brackets on the second line are now just the Hamiltonian
H acting on Ur(R), so
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Finally, by substituting the drift velocity V(R) = ¥3'(R)Vr¥r(R) and the local energy
EL(R) = UZ'HUL(R), we arrive at the final result

— SVRSRT) + Ve [VR)F(R,7)] + (EL(R) — Br)f(R,7) = —<_[(R.7), (15

which is the importance-sampled imaginary-time Schrodinger equation.
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